172 research outputs found

    Real-time Traffic State Assessment using Multi-source Data

    Get PDF
    The normal flow of traffic is impeded by abnormal events and the impacts of the events extend over time and space. In recent years, with the rapid growth of multi-source data, traffic researchers seek to leverage those data to identify the spatial-temporal dynamics of traffic flow and proactively manage abnormal traffic conditions. However, the characteristics of data collected by different techniques have not been fully understood. To this end, this study presents a series of studies to provide insight to data from different sources and to dynamically detect real-time traffic states utilizing those data. Speed is one of the three traffic fundamental parameters in traffic flow theory that describe traffic flow states. While the speed collection techniques evolve over the past decades, the average speed calculation method has not been updated. The first section of this study pointed out the traditional harmonic mean-based average speed calculation method can produce erroneous results for probe-based data. A new speed calculation method based on the fundamental definition was proposed instead. The second section evaluated the spatial-temporal accuracy of a different type of crowdsourced data - crowdsourced user reports and revealed Waze user behavior. Based on the evaluation results, a traffic detection system was developed to support the dynamic detection of incidents and traffic queues. A critical problem with current automatic incident detection algorithms (AIDs) which limits their application in practice is their heavy calibration requirements. The third section solved this problem by proposing a selfevaluation module that determines the occurrence of traffic incidents and serves as an autocalibration procedure. Following the incident detection, the fourth section proposed a clustering algorithm to detect the spatial-temporal movements of congestion by clustering crowdsource reports. This study contributes to the understanding of fundamental parameters and expands the knowledge of multi-source data. It has implications for future speed, flow, and density calculation with data collection technique advancements. Additionally, the proposed dynamic algorithms allow the system to run automatically with minimum human intervention thus promote the intelligence of the traffic operation system. The algorithms not only apply to incident and queue detection but also apply to a variety of detection systems

    A face annotation framework with partial clustering and interactive labeling

    Get PDF
    Face annotation technology is important for a photo management system. In this paper, we propose a novel interactive face annotation framework combining unsupervised and interactive learning. There are two main contributions in our framework. In the unsupervised stage, a partial clustering algorithm is proposed to find the most evident clusters instead of grouping all instances into clusters, which leads to a good initial labeling for later user interaction. In the interactive stage, an efficient labeling procedure based on minimization of both global system uncertainty and estimated number of user operations is proposed to reduce user interaction as much as possible. Experimental results show that the proposed annotation framework can significantly reduce the face annotation workload and is superior to existing solutions in the literature. 1

    DrNLA: Extending Verification to Non-linear Programs through Dual Re-writing

    Full text link
    For many decades, advances in static verification have focused on linear integer arithmetic (LIA) programs. Many real-world programs are, however, written with non-linear integer arithmetic (NLA) expressions, such as programs that model physical events, control systems, or nonlinear activation functions in neural networks. While there are some approaches to reasoning about such NLA programs, still many verification tools fall short when trying to analyze them. To expand the scope of existing tools, we introduce a new method of converting programs with NLA expressions into semantically equivalent LIA programs via a technique we call dual rewriting. Dual rewriting discovers a linear replacement for an NLA Boolean expression (e.g. as found in conditional branching), simultaneously exploring both the positive and negative side of the condition, and using a combination of static validation and dynamic generalization of counterexamples. While perhaps surprising at first, this is often possible because the truth value of a Boolean NLA expression can be characterized in terms of a Boolean combination of linearly-described regions/intervals where the expression is true and those where it is false. The upshot is that rewriting NLA expressions to LIA expressions beforehand enables off-the-shelf LIA tools to be applied to the wider class of NLA programs. We built a new tool DrNLA and show it can discover LIA replacements for a variety of NLA programs. We then applied our work to branching-time verification of NLA programs, creating the first set of such benchmarks (92 in total) and showing that DrNLA's rewriting enable tools such as FuncTion and T2 to verify CTL properties of 42 programs that previously could not be verified. We also show a potential use of DrNLA assisting Frama-C in program slicing, and report that execution speed is not impacted much by rewriting

    Insertion Loss Reduction using Rounded Corners to Mitigate Surface Roughness Effect in Pcb Transmission Lines

    Get PDF
    Signal integrity (SI) can be interpreted as a measure of the distortion of the incident pulse, which is attributed to various contributors, e.g., inter-symbol interference (ISI), crosstalk, jitter, etc. The channel insertion loss is generally the most critical concern in SI designs, since it determines the working bandwidth of a high-speed channel, and the bandlimited channels are known as the root cause of ISI. At the tens of Gigabit rates in use today, PCB transmission lines may have appreciable losses, which can be divided into frequency-dependent dielectric loss and conductor loss, and noticeable amount of losses can be generated at high-frequencies due to the skin effect and copper rough surfaces. In order to reduce the additional conductor loss due to the surface roughness, the employment of low-profile copper foils is a common practice in high-speed digital design. However, this existing method is not cost-effective. In this paper, insertion loss reduction using rounded corners are proposed and verified using both 2D and 3D full-wave simulations for the first time. Rounded corners can mitigate the increased insertion loss due to copper surface roughness in PCB transmission lines and can be applied in high-speed interconnect designs to increase eye margins. The impact of applying rounded corners on far-end crosstalk is also discussed
    corecore